JunD suppresses bone formation and contributes to low bone mass induced by estrogen depletion.
نویسندگان
چکیده
JunD is an activator protein-1 (AP-1) component though its function in skeletal system is still not fully understood. To elucidate the role of JunD in the regulation of bone metabolism, we analyzed JunD-deficient mice. JunD deficiency significantly increased bone mass and trabecular number. This bone mass enhancement was due to JunD deficiency-induced increase in bone formation activities in vivo. Such augmentation of bone formation was associated with simultaneous increase in bone resorption while the former was dominant over the latter as accumulation of bone mass occurred in JunD-deficient mice. In a pathological condition relevant to postmenopausal osteoporosis, ovariectomy reduced bone mass in wild type (WT) mice as known before. Interestingly, JunD deficiency suppressed ovariectomy-induced increase in bone resorption and kept high bone mass. In addition, JunD deficiency also enhanced new bone formation after bone marrow ablation. Examination of molecular bases for these observations revealed that JunD deficiency enhanced expression levels of c-jun, fra-1, and fra-2 in bone in conjunction with elevated expression levels of runx2, type I collagen, and osteocalcin. Thus, JunD is involved in estrogen depletion-induced osteopenia via its action to suppress bone formation and to enhance bone resorption.
منابع مشابه
P-181: Protective Role of Vitamin E As An Alternative Treatment for Ovariectomized Osteoporotic Rats
Background: Osteoporosis one of the postmenopausal symptoms is characterized by bone loss. There is a link between excessive reactive oxygen species (ROS) formation, estrogen deficiency due to cessation of ovarian function and bone loss. Free radicals are responsible for causing osteoblast apoptosis and reducing osteoblastogenesis in bone remodeling. Vitamin E is a potent antioxidant with the a...
متن کاملImbalanced Diet Deficient in Calcium and Vitamin D- Induced Juvenile Osteopenia in Rats; the Potential Therapeutic Effect of Egyptian Moghat Roots Water Extract (Glossostemon bruguieri)
This study aimed to explore and validate a new juvenile osteopenic (JO) rat model then examine the efficacy of moghat (Glossostemon bruguieri) as an alternative reversal therapy for JO. Phytochemical screening analysis showed that moghat contains 5.8% alkaloids, 1.5% flavonoids and 13.2% total phenols. Juvenile osteopenia was induced in 15 days old Sprague- Dawley female rats by feeding them fr...
متن کاملImbalanced Diet Deficient in Calcium and Vitamin D- Induced Juvenile Osteopenia in Rats; the Potential Therapeutic Effect of Egyptian Moghat Roots Water Extract (Glossostemon bruguieri)
This study aimed to explore and validate a new juvenile osteopenic (JO) rat model then examine the efficacy of moghat (Glossostemon bruguieri) as an alternative reversal therapy for JO. Phytochemical screening analysis showed that moghat contains 5.8% alkaloids, 1.5% flavonoids and 13.2% total phenols. Juvenile osteopenia was induced in 15 days old Sprague- Dawley female rats by feeding them fr...
متن کاملEstrogen decreases TNF gene expression by blocking JNK activity and the resulting production of c-Jun and JunD.
Central to the bone-sparing effect of estrogen (E(2)) is its ability to block the monocytic production of the osteoclastogenic cytokine TNF-alpha (TNF). However, the mechanism by which E(2) downregulates TNF production is presently unknown. Transient transfection studies in HeLa cells, an E(2) receptor-negative line, suggest that E(2) inhibits TNF gene expression through an effect mediated by e...
متن کاملEstrogen suppresses activation but enhances formation phase of osteogenic response to mechanical stimulation in rat bone.
We used a model whereby mechanical stimulation induces bone formation in rat caudal vertebrae, to test the effect of estrogen on this osteogenic response. Unexpectedly, estrogen administered daily throughout the experiments (8-11 d) suppressed, and ovariectomy enhanced, mechanically induced osteogenesis. Osteogenesis was unaffected by the resorption-inhibitor pamidronate, suggesting that the su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cellular biochemistry
دوره 103 4 شماره
صفحات -
تاریخ انتشار 2008